Improving neural networks with bunches of neurons modeled by Kumaraswamy units: Preliminary study

نویسنده

  • Jakub M. Tomczak
چکیده

Deep neural networks have recently achieved state-of-the-art results in many machine learning problems, e.g., speech recognition or object recognition. Hitherto, work on rectified linear units (ReLU) provides empirical and theoretical evidence on performance increase of neural networks comparing to typically used sigmoid activation function. In this paper, we investigate a new manner of improving neural networks by introducing a bunch of copies of the same neuron modeled by the generalized Kumaraswamy distribution. As a result, we propose novel nonlinear activation function which we refer to as Kumaraswamy unit which is closely related to ReLU. In the experimental study with MNIST image corpora we evaluate the Kumaraswamy unit applied to single-layer (shallow) neural network and report a significant drop in test classification error and test cross-entropy in comparison to sigmoid unit, ReLU and Noisy ReLU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Use of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method

Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Predicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks

A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis.  Radi...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.02581  شماره 

صفحات  -

تاریخ انتشار 2015